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We investigate the generation and propagation properties of spatiotemporal necklace-ring solitons(NRSs) from the vortex 

with the topological charges in three-dimensional complex Ginzburg-Landau equation (3D-CGLE) with an umbrella-shaped 

potential (USP).Under the action of the umbrella-shaped potential, the evolution dynamics of spatiotemporal necklace-ring 

solitons are studied comprehensively and thoroughly. The formation of spatiotemporal necklace-ring solitons does not only 

depend on the umbrella-shaped potential but also transmission properties. As the appropriate potential and its parameters 

are given, the vortices with S=2 can evolve the spatiotemporal necklace-ring solitons more easily than these with S=1 on the 

same propagation distance. The results suggest potential applications in optical communication devices and nonlinear 

dissipative media. 
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1. Introduction 

 

Complex Ginzburg-Landau equations (CGLE) have 

been widely used in physics and applied mathematics 

communities as a class of universal models with many 

applications for nonlinear optics, fluid dynamics, and 

chemical waves to second-order phase transitions, 

including superfluidity, superconductivity, liquid crystals, 

Bose-Einstein condensates and quantum field theories 

[1-7]. Recently, a lot of works mainly focus on 

cubic-quintic complex Ginzburg-Landau equations, which 

localize more complex patterns in optical media, such as 

dissipative spatial solitons, vortex solitons, necklace-ring 

solitons [8-19] etc. A. Barthelemy et al observed firstly 

that the necklace-ring beams could exist stably in Kerr 

medium and investigated their stability [20]. M. Soljačić et 

al demonstrated theoretically that the necklace-ring beam 

could be self-trapped and take on stable propagation 

characteristics in self-focusing Kerr media [17-21]. More 

recently, the dissipative spatial solitons induced by the 

external potentials have excited more and more attention, 

and the unique dynamic regimes of dissipative spatial 

solitons supported by sharp quasi-one dimensional(1D) 

potentials in the 1D and 2D-CGLE with CQ nonlinearity 

were investigated[22-34].For the conservative models, 

dissipative spatial solitons splitting by means of using an 

external potential in the 2D-CGLE with the 

“checkerboard” potential, has been reported [35]. In this 

paper, the spatiotemporal necklace-ring solitons in 

3D-CGLE with the USP are investigated. Under the action 

of the appropriate USP, the vortices can evolve and form 

the spatiotemporal necklace-ring solitons. In addition, the 

formation of spatiotemporal necklace-ring solitons does 

not only depend on the USP but also transmission 

properties. These results are very helpful for understanding 

the formation and evolution of the spatiotemporal 

necklace-ring solitons completely and exploring many 

future potential applications.  

 

2. The model 

 

The propagation of an electromagnetic field u in the 

optical medium, which is described by the 3D-CQCGL 

equation [26,27]
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where x, y and t denote the transverse coordinates and 

temporal coordinate, respectively, z represents the 

propagation distance. D(=1/2) denotes the anomalous 

dispersion propagation regime, ν is the quantic  
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self-defocusing coefficient, δ is the coefficient 

corresponding to the linear loss (δ>0) or gain (δ<0),µ> 0 

accounts for the quintic-loss parameter, and ε>0 is the 

cubic-gain coefficient, γ>0 accounts for spectral filtering 

in optics, β is the spatial-diffusion term, which appears in a 

model of laser cavities. 

As a typical example, we concentrate on the USP 

[9,23], the analytical form of F(x,y) is 

                            nmpryxF
1

)cos(),(                                        (2) 

where 22 yxr  ,the parameter p denotes the depth 

of the potential; the parameter n determines the sharpness 

of the potential; θ is the angular coordinate, m stands for 

the number of folding umbrellas, as shown in Fig. 1(a). 

The initial solutions of the vortex in Eq. (1) are 

expressed by 
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where A is the amplitude, S is the topological charge and w 

is the width. The stable vortices with S=1 and 2 are 

obtained, as shown in Figs. 1 (b) and (c). In this case, the 

3D vortices with S=1 and 2 are all stable, characterized by 

the following values of the energy 
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and the average evolution radius 
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Fig. 1. (Color online) (a) Umbrella-shaped potential with p=1, n=1 and m=12. (b), (c) Intensity distribution  

of vortices with S=1 and S=2,respectively (color online) 

 

3. Results and discussion    

 

The numerical simulations are performed using the 

split-step Fourier method [36-37]. In simulations, we 

select the generic case for the set of parameters: δ=0.4, 

µ=1, ε=2.43, γ=β=0.5 and ν=0.1. First, we analyze and 

discuss the generation and evolution properties of vortices 

with S=1 for different depth parameters p for other given 

parameters, namely, m=5, n=1 of the USP. Fig.2 shows the 

evolution of spatiotemporal NRSs with S=1 for different 

depths of the USP. When the depth parameter is 0.04, the 

vortices localize on the top of the potential, and the 

vortices gradually expand along the azimuthal direction 

with the increase of transmission distance, as shown in Fig. 

2(a). The reason is because the potential is weak, the 

vortices localization is attributed to the viscous effect that 

prevents the vortices from splitting on the top of potential  

namely the vortices cannot form NRSs for the smaller and 

moderate depth. As the depth of the USP is increased to 

0.07, the vortices will expand continuously on 

propagation distance from 0 to 60, and form annular beam 

at distance of 60; the vortices evolve NRSs as 

further increasing propagation distance, as shown in Fig. 

2(b). As the depth of the USP equals to 0.09,the vortices 

expand continuously on propagation distance from 0 to 40, 

and form annular beam at distance of 40; the vortices 

evolve NRSs with further increasing propagation distance, 

as shown in Fig. 2(c).As the depth of the USP is increased 

to 0.12,the vortices expand continuously on 

propagation distance from 0 to 20, and form annular beam 

at distance of 20; the vortices evolve NRSs with 

further increasing the propagation distance, as shown in 
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Fig.2(d).These results show that the USP can provide a 

continuous source of energy necessary for the formation of 

NRSs, and that the stronger the potential is, the easier the 

division.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

    

Fig. 2. (a)-(d) Isosurface plots of total intensity |u(x,y,t)| 2 , evolutions of the central vortex with S=1 at (p=0.04, m=5), (p=0.07, m=5) 

(p=0.09, m=5), and (p=0.12, m=5). Evolutions of the energy of vortex with S=1 at m=5 with p=0.03, 0.04, 0.07, 0.09 and 0.12. (f) 

Evolutions of radius of vortex with S=1 at m=5 with p=0.03, 0.04, 0.07, 0.09 and 0.12 (color online) 
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As the depth of the USP takes on strong enough, the 

vortices form NRSs on a certain distance. During 

propagation, the vortices gradually expand for the USP. 

The expanding velocity of the vortices depends on the 

sharpness, depth of the potential. As the depth of the USP 

increases, the push force becomes larger, and the vortices 

expand faster and form NRSs more easily. Fig. 2(e) 

presents the evolution of energy with different depths. 

Obviously, when the depths of the USP are 0.02 and 

0.04,the energy gradually increases with increase of 

propagation distance, finally tends towards a steady state; 

As the depth parameters are increased to 0.07,0.09 and 

0.12, the energy rapidly increases and reaches 

the maximum, then decreases with a sudden change and 

tends towards a steady state. The vortices decay and lose a 

large amount of energy. Fig. 2(f) presents the evolution 

radius for different depths. Obviously, when the depths of 

the USP are 0.03 and 0.04, the radius gradually increases 

with increase of propagation distance, finally 

tends towards a steady state. As the depth parameters are 

further increased to 0.07, 0.09 and 0.12, the radius rapidly 

increases and arrives at the maximum, then decreases with 

a sudden change and finally tends towards a steady state. 

Fig. 3 presents the evolution of spatiotemporal NRSs 

with S=2 for different depths of the USP. Compared with 

Fig. 2(a), the vortices quickly evolve into annular beam 

at a shorter distance of 20, the annular beam continually 

enlarges with increase of propagation distance, however 

cannot form NRSs for the small and moderate depth, 

namely p=0.04, as shown in Fig. 3(a). As further 

increasing depth of the USP to 0.07, we can make clear 

that the vortices expand continuously, present 

necklace-like beam at propagation distance of 60 and form 

NRSs easily; NRSs can generate with increase of the 

propagation distance, as shown in Fig. 3(b). Obviously, as 

the depth of the USP is 0.09, the evolution and formation 

of NRSs are similarity with these in Fig. 2(c). As the depth 

of the USP is increased to 0.12, the vortices evolve NRSs 

immediately during propagation, as shown in Fig. 3(d). 

Fig. 3(e) presents the evolution of energy for different 

depths. Obviously, when the depths of the USP are 0.02 

and 0.04, the energy gradually increases with increase of 

propagation distance, finally tends towards a steady state. 

As the depth parameters are increased to 0.07, 0.09 and 

0.12, the energy rapidly increases and reaches 

the maximum, then decreases with a sudden change and 

arrive at a steady state. The vortices decay and lose a large 

amount of energy. Fig. 3(f) presents the evolution radius 

for different depths. Obviously, when the depths of the 

USP are 0.02 and 0.04, the radius gradually increases with 

increase of propagation distance, finally 

tends towards a steady state; as the depths are increased to 

0.07,0.09 and 0.12, the radius rapidly increases, reaches 

the maximum, and then decrease with a sudden 

change and finally tends towards a steady state. Through 

above studies on the evolution of dissipative vortices with 

S=1 and 2, we find that the vortices with S=2 evolve into 

NRSs more early than these with S=1 for the same depth 

of the USP on a shorter propagation distance. As the depth 

of the USP becomes strong enough, the vortices form 

NRSs on a certain distance. The expanding velocity of the 

vortices depends on the sharpness, depth of the potential. 

As the depth of the USP increases, the push force becomes 

larger, therefore the vortices expand faster and easily form 

NRSs. By performing extensive numerical simulations, the 

potential is enough big, and the vortices do not form NRSs 

but decay more quickly.
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(a) 

 

(b) 

 

(c) 

 

(d) 

  

Fig. 3. (a)-(d) Isosurface plots of total intensity |u(x,y,t)| 2 , evolutions of the central vortex with S=2 at (p=0.04, m=5), (p=0.07, m=5) 

(p=0.09, m=5), and (p=0.12, m=5). Evolutions of the energy of vortex with S=2 at m=5 with p=0.03, 0.04, 0.07, 0.09 and 0.12. (f) 

Evolutions of radius of vortex with S=2 at m=5 with p=0.03, 0.04, 0.07, 0.09 and 0.12 (color online) 

 

4. Conclusions 

 

In summary, the formation and evolution of 

spatiotemporal necklace-ring solitons induced by the USP 

are investigated comprehensively and thoroughly. The 

results show that the formation mechanism of 



22                                      Guangyu Jiang, Kejun Zhong, Tianyi Xu 

 

spatiotemporal necklace-ring solitons does not only 

depend on the strength of the USP but also on different 

topological charges. For the appropriate potential, the 

vortices with the topological charges can evolve 

more easily spatiotemporal necklace-ring solitons on a 

certain propagation distance. However, lots of numerical 

simulations show that a strong potential will not make the 

vortices form NRSs, on the contrary the vortices collapse 

on a smaller propagation distance. These results suggest 

potential applications such as routing light signals, 

all-optical data-processing schemes in optical 

communication devices, dynamic and stationary ring-like 

beams in nonlinear dissipative media. 
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